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MULTIRESPONSE ROTATABILITY

André I. KHURI

Department of Statistics, University of Florida, Gainesville, FL 32611, USA
> A

Abstract: Since its introduction by Box and Hunter (1957)? rotatability of a
response surface design has always been associated with single-response models.
The—;;resent article extends this design concept to multiresponse models. For
these models, rotatability means constant prediction variances and covariances,
and hence correlations, among the predicted responses at points that are
equidistant from the design center. It is shown that multiresponse rotatability
can be achieved if and only if the design is rotatable (in the usual sense) for a
single-response model whose order, or degree, is the highest among all the
response models under consideration. This property does not depend on the

. AY
form of the variance-covariance matrix of the responses. /- JRE—
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1. Introduction .
*
Ny
. o . L d:
Box and Hunter (1957) proposed the idea of rotatability for a single-response model of the &
form
- P
y=X @ + € (1.1) :‘.g
)
l:::
t
By definition, a design D for fitting model (1.1) is rotatable if the prediction variance, Var[}"(f)], a!
N d
where () is the predicted response at a point §, remains constant at all points that are equidistant ;::
t
. . . . . ¥,
from the design center. Equivalently, the quality of prediction, as measured by the size of the ::.l,
I'q
prediction variance, remains invariant to any rotation of the coordinate axes, if the design is f
®.
rotatable. This is a desirable feature in a design, but is not an essential one. However, since .:
““
. . . . e
rotatability, or near rotatability, can be easily achieved, it is rather insensible to work with a design ot
. P . ore , . Lt
that has a considerable deviation from rotatability. Draper and Guttman (1988) and Khuri (1988) I
4
proposed two different measures of rotatability to determine when a design is near rotatable. .':'
o,
i~
In a multiresponse situation several responses are considered simultaneously. Suppose that o~
\J

we have a system of r response variables: y, ¥,,.... yr; each of which depends on the same set of &
input variables denoted by x;. X,..... x, within an experimental region A. The input variables are

coded so that the design ceater is the point at the origin of the coordinates system. The model for

?"r ‘oﬂ-’.‘:‘:-..-!‘

1 .
the rh response is

A ww
’l ll' x ,‘
l'-./"»,

Yl = m(§) + e, 1=12, .1, (1.2)

P
.
»

¥ ¢
'
. e

where 11,({) is a polynomial of degree d, defined at € = (xp Xounl xk)’ and ¢; is a random error

P vy
SN

vy

(¢=1.2,...,1). Model (1.2) can be expressed as

s

"(g) = g’[di] ‘3' Fow =1 200 (1.3)
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where x' = (1, §'), )5'[ l is the derived power vector of x' of degree d;, which consists of powers

and cross products of powers of xy, Xy,..., x, with suitable multipliers such that

d;] [q; d;
’SI[ ‘])5[ d = (x'x) ' (see Box and Hunter, 1957, Section 5), and B; is a vector of unknown

parameters (i = 1, 2,.., r). The number of elements of x s p;, where

k+ d;
p'.=( '('i'. '), i=12..,r (1.4)

If observations are made on the r responses at n design settings, then from (1.3) we obtain

the models
!izxi @;'*'Ev 1=1,2,...,r, (1.5)

. . th
where y. and ¢, are the vectors of observations and random errors, respectively, for the i— response,

and X, is of order nxp; and rank p; (2 =1, 2,..., r). It is assumed that
E(¢;) =0, 1=12..,1, (1.6)
E(¢; ¢)) = 04 Iny 0i= 12,1, (1.7)

where [, is the identity matrix of order nxn. The models in (1.5) can be displayed as a single

muitiresponse model of the form
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where ym = (y1, Y50 ¥8)'s Bm = (81, B4 3Dy €m = (], €he-r €1)'s and Xpy is the block-
diagonal matrix, diag ()_(1, Xay oty Xr)- By (1.6) and (1.7), the variance-covariance matrix of ¢y, is

£ ® Ip, where £ = (o,

;j) is the variance-covariance matrix of the responses of order rxr and ® is

the direct, or Kronecker, product symbol. The best linear unbiased estimator of Gy is

Bm =X (5" © In) ¥m | ¥h(Z" © Ln) ym- (1.9)

The variance-covariance matrix of l?m is given by
Var(Bm) = Xin(E © In) Xm] - (1.10)

Let ym(§) be the rx1 vector of predicted responses at a point £ in the region A, that is,

,1.".'-’- “

=
'y

Y

TAN

ym(€) = [31(6), 52(8),... ¥(6)] (1.11)

ol

where

and B' is the best linear unbiased estimator of 3, obtained from (1.9). Formula (L.11) can then be

written as

o A
20

@ .

yin(€) = A() A, (1.13)

v "y 7
s

[dl]‘ -_V[d")]-

v X From (1.10) and (1.13) the variance-covariance matrix

[‘lr])_

where A(€) = diag (‘(

'5. ‘.'
ey

of yin($) is equal to

&m&awm&mwhxmmmsa W
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] ! !

Vaym(§)] = 2'€) Xh(E" @ In) Xm ] Ac0). (1.14) ;

. :
. -
X Definition_1.1. A design D for fitting the multiresponse model in (1.8) is said to be rotatable if :v

Var [xm(g)] is constant at all points, £, that are equidistant from the origin.

" .
mg This definition is equivalent to stating that, when the design is rotatable, the variances and :
o
) covariances of the predicted responses are constant on spheres (hyperspheres, in general) centered at W
: the origin. This implies that the r(r-1)/2 cortelations among the predicted responses are also ..:.
', constant on such spheres. The same thing can be said about the variance of any linear combination, ::

! [
) iéx ¢; ¥;(§), of the predicted responses. This is a desirable feature since certain linear combinations :

of the responses may be of special interest to the experimenter. For example, it may be

experimentally difficult to obtain independent measurements on some response. If, however, this

- P
4 f['f « '1f1"4"

response is linearly related to the other responses (because of physical or chemical laws), then its

value can be determined in terms of the other responses (see Box et al., 1973, Section 6).

Y

ol By e I

= 2. Conditions for Multiresponse Rotatability

Let £ and n be two points that are the same distance from the origin. There is an

) orthogonal matrix, T, of order kxk such that n = TE. Let z = (1, n")!, then z = Rx, where

x = (1, §')' and
. R =diag(l,T). (2.1)

The matrix R is orthogonal of order (k+1)x(k+1). The derived power vector of degree d, of zis of

the form

P

»
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e

I'.‘I_'/Nf.'f‘\r.'-"\r.. v~.'r ..- .‘- -‘. ..- \' \. w'A" \’ .
b - . ol u!

St d

D e N e L 4 ot e b




e 0% tTa AR B B0 0t hl B 0 78 0a € . ® a? faf Ba® 2" Ba? 8% 0a Ha® N Ba¥ bal Gt Be¥ o¢ B2t 0e® Ma" 12" o Wt (gt ated 0g® 107 Byt g et TR

[d}]

where R is the dim‘ Schliflian matrix of R of order p,xp; and p; is defined in (1.4). Sce, for
example, Box and Hunter (1957, Section 5) for more details concerning Schldflian matrices. It is
known that l_i[d‘] is an orthogonal matrix since R is. The vectors of predicted responses at £ and n
are ym(£) and ym(n), respectively. The variance-covariance matrix of ym(§) is given in (1.14).
Similarly, the variance-covariance matrix of ym(n) can be written as

-1

Var [gm(n)] = 4'() [ ¥h(E © In) Xm | A0 (2.3)

(Z[dﬂ' z[d"’]...., Z[dr])‘

where A(7) = diag Using the transformation (2.2), formula (2.3) can be

rewritten as

Vae [gin(m)] = 4(©) ' [ Xha(" © 1n) Xm] $ 469

= A S"Sh(T @ In) XmS | a(6), (2.4)
where S is the orthogonal matrix,
d
S:dmg([d] Nﬂwqg[d) (2.5)

By Definition 1.1. multiresponse rotatability requires that the terms on the right sides of
(1.14) and (2.4) be equal for all £ and R. Since T is an arbitrary variance-covariance matrix. this
equality should also hold for all positive definite matrices. I, of order rxr. Now,

‘({n(g‘ o) !n) Xm and s’ “.(:n (S'l ) !n) X S can be partitioned as

R e N \-’ s, oA AR \'&'\"\."N’\‘ AN, W AT AL T A T R T A
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X(Z" ® In) Xm = (" X/ X))
l
)
d (d]
| S' Xf(Z" ® In) Xm § = (o" R xR ),
i ..
) where ¢” is the (i,])m element of £°!. In order to achieve multiresponse rotatability we must
therefore have
3 [d] [d] .
; XIX,=R"VXIX;R T, aj=120, (2.6)
N for every orthogonal matrix, R, of the form given in (2.1).
b N ; - ld]
;: Now, let t be the vector (1, ty, t,,..., t;} . Its derived power vector of degree d, is t
J
' (=1, 2,..., r). Consider the expression
' .
v .
» A
) 2l
, 4 (d;) .
Q; =g’[ l XiX;t 7 =120, (2.7) N
. 'ﬂ
{ Note that .
’ -
. A
. ! »
\ d. d] ] [d][d] d.] Id.
, x, 1 = (x{[ S gL g [ :
~y
» \
' \
: d. d. d. ~9
; = [(-xi t) . (x28) "o (xn t) ’], J=1 2. (2.8) N
A
¥ -
where x| = (1, §{)) and §{J is the vector of 1_1¢ design settings for the input variables _:
N (u=1.2,...,n). Formula (2.7) can then be written as ; '
3
L/ .‘.
! 4
. A
) 3
1
' U
t
-
»
u,.f
g g e o e S ey NN T 3 NN e N e RN AN W]
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d;+d;
=& (shy)
) Q., =0z Xut
1
! d."*'dj
& 1 & i=1.92 9.6
=2, + 2 Xy Y L= 1.2,...,r, (2.9)
. ’t_h . . th . , .
K where x,,, is the value of the input variable at the u™ experimental run {/ = 1, 2,.., k
¥
‘ . . . . ) .
u = 1, 2,...,, n). By applying the multinominal expansion to (2.9) it can be verified that the
. 61 62 "k . . . .
coefficient of t," t,"... t,” in this expansion is
‘ (d + d)! k] An A
' L (el =, (2.10)

(6))! (d; +d, - )

=8

-

o k 8§y 4 AR\ .
where 0, 6,,.... 6, are nonnegative integers such that § = 1.‘_‘, 6 < d; +d,, and (1 1y'2 ‘) is a
=1

design moment of order ¢ defined as
55 982 5% ot s
@ zmk)zéxmmyﬁr (2.11)

The quantity Q; is therefore a generating function for the design moments through order d, + d)

(1,7 = 1. 2,..., t). If the design is rotatable, then from (2.6) and (2.7) we obtain

Q:H%%MJVxRMwM
3] = - REEEAS L t

=102 0T (2.12)

Thus, Q,] remains unchanged by any orthogonal transformation of t of the form (2.1) if and only if

the design is rotatable. Since Q.‘, is a polynomial of degree d, + d} in ty, Lyeo by, it must be a

k
function of IE tf. that is,
=1
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Q=% al 5], =12 .1 (2.13)
9 TS0l ) " A ’

” 5
where e; = [(d.‘ + dj)/2] is the greatest integer in (d, + dj)/2. The coefficient of t‘:l Lg'... tkk in
(2.13) is, therefore, zero if any of the §, (I =1, 2,..., k) are odd integers. If all the 6, are even. then

the coefficient is

al(5/2)!

k
I =¥ 6, <d; + d), wy=1,2,..,r (2.14)
IH(51/?)!
=1

=t

By comparing (2.10) with (2.14) it can be concluded that a design is rotatable if and only if the

design moments through order d; + dj (1,7 =1, 2,..., 1) are of the form
0, if any 6, is odd

(12" kA") - (2.15)

>3
I} ~
—_
[= 2
-~
-

. if all the 6, are even,

(8%
=
~. >
(3

—Ir
—_
>

J

~
v
=

where /\? is the quantity

< ‘2 -
e a’ '_)’/ (8/2) (d, +d, - &) ) 16
B (d; + d)! ’ (2.16)

Since (2.15) must hold for all +.j (= 1. 2..... r). it follows that the moments through order 2d. where

d = maé (da). of a rotatable design must be of the form
i€aSsT
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0, if any &, is odd
§
(1"‘ 2’2 k"): (2.17)
k
As IH (6!
=1 :
o . if all the &, are even,
27 1 (6,/2)!
=1
k
where & = 1‘:31 8, < 2d. and Ay is given by
5/2 I
3 ag 2" (&/2) (2d - &) (2.18)
' (2d)! ' -
where a; is the value of a;j in (2.16), which corresponds to 1 = j = 1 and 1 is such that
d.. =d = max (da).
e 1<a<r

On the basis of (2.17) it can finally be concluded that the necessary and sufficient condition
to achieve multiresponse rotatability is that the design be rotatable for a single-response model of

order d = max (d,).
1<a<r’

3. Examples

Example 1. Consider a multiresponse system consisting of the three response models

yi = dg + Juxg + JiaXe + Jaxg + e

= Jog + dogxy + JaaXa + dagxy + 6,

‘e
[X]
|
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y3 = 'H30 + gz—:l ﬁsixi + ‘EJ BSUX’XJ + jE[ 53")(' + (3. -
Here, k = 3, r = 3,d;, =d, = 1, d3 = 2, hence d = 2. The variance-covariance matrix of the :
responses is assumed to be 5
L
s
2 1 0
T = 1 3 2 (3.1) :
0 2 5 ::
Y
h
U
Y
3 The models are fitted using the design D given in Table 1. This is a second-order rotatable central

composite design with one center point. By (2.17), D is also rotatable in the multiresponse sense.

Using formula (1.14) it can be verified that

Y LT,

Var[yl(g)] =.1333 + .1464 p° (3.2) 5

Va.r[yz(g)] =.20 + .2197 p? (3.3) R

! 3

J t

v Var[y3(§)] = 3.4671 - 1.9285 p* + .5617 p* (3.4) X

Cov[¥1(£), 72(§)] = -0667 + .0732 p* (3.5) .

. Cov[¥1(€), ¥5(§)] =0 (3.6) &

i :;
" Cov[yz(g), ys(g)] =.1333 + .1464 p°, (3.7)

:

b where p? = x} + x3 + x3. Thus, the variances and covariances of the three predicted responses are "

b ,,

()

I ; ; [ wy e w0 [P RIS B LA P S N L F g [ v vy, X .
.“ i) -\'.“'..'l , ‘“‘-*‘ .-:-‘ '- -" ; L ( y 'l (- ; Y(." f ’ * f" ..‘ ~ N.{."~ \ .' K |~ . ,l % .l‘
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constant on spheres centered at the origin.

ZWIS TS Y

. ]

To demonstrate that multiresponse rotatability does not depend on the form of £, another ¥

value of this matrix is now used, namely,

Formulas (3.2) - (3.7) become 3

Var[yl(g)] = .20 + .2197 p°

Var[y,(g)] = .60 + .659 p*

VIOl R R AT

~
P A,

Var[ya(g)] = 1.1884 - .3819 p° + .1652 p*

[

(:ov[y,(g), yz(g)] =.3333 + .3661 p° )

cov[yl(g), ya(g)] = .0667 + .0732 p°

Cov[¥5(§), ¥5(§)] = -20 + 2197 p°.

L

Example 2. Consider again the three-response system as in Example 1, except that v, is now

represented by the second-order model

1 el

~> x_»
P
.
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>
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3 3 .
Y2 = B0+ L Bax; + Z Byyxix; + B Baxi + €g.

L The design D and the variance-covariance matrix ¥ are the same as in Table 1 and formula (3.1),

respectively. In this case, the variances and covariances of the three predicted responses are

: Var[y,()] = -1333 + 1464 p*
' Var[&z(g)] = 2.5042 - 1.4675 p* + .413 p*
A
3 Var[ya(f)] = 4.9418 - 3.0083 p° + .8261 p*
!' -
Ay
i

Cov[31(£), 72(§)] = 0667 + .0732 p°
E Cov[7,(€), 75(§)] = 0

Cov[yz(g), ys(g)] = 1.9767 - 1.2034 p* + .3304 p*.
)
D
Y 4. Concluding Remarks

i)  In practice, the variance-covariance matrix £ of the responses is unknown. Hence, the

3 estimator l?m in (1.9) and its variance-covariance matrix given in (1.10) cannot be computed.
' An estimator of ¥ is therefore needed. There are several possible estimators. two of which are
v given below (see Srivastava and Giles, 1987, Section 2.3)

L =(6) (4-1)
)
' -
R £=(d,) (4.2)
)
]
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where
o=y o - XXX X I - XXX ) X!
5=y In - XXX X5 In - X(X,X)) Xj|y;/n (4.3)
. -1
5y =y [In - XX'0)'X'] y,/m, (4.4)
where X is the matrix for a single-response model of order d = max (da). The first estimator
I€asT

was proposed by Zellner (1962). If T is substituted by £ and £ in (1.9), we get the estimators
Bms = [X{’n(g-l O !n) ).(m:l X;n(}::_l ® !n) ¥m (4.5)
Bms = [3411(&-1 © ln) Xm:' X ;n(g-l ) ln) ym, (4.6)

respectively. Substituting these estimators for L:Jm in (1.13) leads to the predicted response

vectors yms(§) and yms(§), respectively.

The true variance-covariance matrices of 121,,15 and A?ms are., to order O(n™'),
asymptotically equal to the variance-covariance matrix of ‘:3"" which is given in (1.10). Sce
Srivastava and Giles (1987, Section 3.3). Approximate expressions for Var[_y}ms(g)] and
Var[):'ms(g)] can then be obtained from (1.14) by substituting £ by ¥ and I. respectively.
Hence, for large n these expressions are almost constant on spheres centered at the origin, if the
design is rotatable.

ii)  The constancy of prediction variances and covariances on spheres when the design is rotatable
results in constant correlations among the predicted responses.  This interesting property is

particularly useful for simultaneous inference making involving the responses. It would be

quite discomforting if such inference were to change by a mere rotation of the coordinate axes,
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which can occur in the absence of multiresponse rotatability.
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Table 1

The design points for Example 1

X Xq X3
-1.0 -1.0 ~-1.0
1.0 -1.0 -1.0
-1.0 1.0 -1.0
-1.0 ~-1.0 1.0
1.0 1.0 -1.0
1.0 -1.0 1.0
-1.0 1.0 1.0
1.0 1.0 1.0
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